Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Vaccine X ; 14: 100329, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37577264

RESUMO

Koalas are an endangered species under threat of extinction from several factors, including infections agents. Chlamydia pecorum infection results in morbidity and mortality from ocular and urogenital diseases while Koala Retrovirus (KoRV) infection has been linked to increased rates of cancer and chlamydiosis. Both C. pecorum and KoRV are endemic in many wild Australian koala populations, with limited treatment options available. Fortunately, vaccines for these pathogens are under development and have generated effective immune responses in multiple trials. The current study aimed to improve vaccine formulations by testing a novel peptide version of the Chlamydia vaccine and a combination Chlamydia - KoRV vaccine. Utilising a monitored wild population in Southeast Queensland, this trial followed koalas given either a 'Chlamydia only' vaccine (utilising four peptides from the chlamydial Major Outer Membrane Protein, MOMP), a combination 'Chlamydia and KoRV' vaccine (comprised of the chlamydial peptides plus a KoRV recombinant envelope protein (rEnv)) or no treatment. Clinical observations, C. pecorum and KoRV gene expression, serum IgG, and mucosal immune gene expression were assessed over a 17-month period. Overall, both vaccine formulations resulted in a decrease in chlamydiosis mortality, with decreases in C. pecorum, CD4, CD8ß and IL-17A gene expression observed. In addition, the combination vaccine group also showed an increase in anti-KoRV IgG production that corresponded to a decrease in detected KoRV-B expression. While these results are favourable, the chlamydial peptide vaccine did not appear to outperform the established recombinant chlamydial vaccine and suggests that a combination vaccine formulated with recombinant MOMP plus KoRV rEnv could capitalize on the demonstrated benefits of both for the betterment of koalas into the future.

2.
J Fungi (Basel) ; 8(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36294670

RESUMO

A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.

3.
Mol Ecol ; 31(12): 3286-3303, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510793

RESUMO

Disease is a contributing factor to the decline of wildlife populations across the globe. Koalas, iconic yet declining Australian marsupials, are predominantly impacted by two pathogens, Chlamydia and koala retrovirus. Chlamydia is an obligate intracellular bacterium and one of the most widespread sexually transmitted infections in humans worldwide. In koalas, Chlamydia infections can present as asymptomatic or can cause a range of ocular and urogenital disease signs, such as conjunctivitis, cystitis and infertility. In this study, we looked at differences in response to Chlamydia in two northern populations of koalas using a targeted gene sequencing of 1209 immune genes in addition to genome-wide reduced representation data. We identified two MHC Class I genes associated with Chlamydia disease progression as well as 25 single nucleotide polymorphisms across 17 genes that were associated with resolution of Chlamydia infection. These genes are involved in the innate immune response (TLR5) and defence (TLR5, IFNγ, SERPINE1, STAT2 and STX4). This study deepens our understanding of the role that genetics plays in disease progression in koalas and leads into future work that will use whole genome resequencing of a larger sample set to investigate in greater detail regions identified in this study. Elucidation of the role of host genetics in disease progression and resolution in koalas will directly contribute to better design of Chlamydia vaccines and management of koala populations which have recently been listed as "endangered."


Assuntos
Infecções por Chlamydia , Chlamydia , Marsupiais , Phascolarctidae , Animais , Austrália , Chlamydia/fisiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/veterinária , Progressão da Doença , Marsupiais/genética , Phascolarctidae/genética , Phascolarctidae/microbiologia , Receptor 5 Toll-Like
5.
Front Microbiol ; 12: 643180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859630

RESUMO

The γ-proteobacteria are a group of diverse bacteria including pathogenic Escherichia, Salmonella, Vibrio, and Pseudomonas species. The majority swim in liquids with polar, sodium-driven flagella and swarm on surfaces with lateral, non-chemotactic flagella. Notable exceptions are the enteric Enterobacteriaceae such as Salmonella and E. coli. Many of the well-studied Enterobacteriaceae are gut bacteria that both swim and swarm with the same proton-driven peritrichous flagella. How different flagella evolved in closely related lineages, however, has remained unclear. Here, we describe our phylogenetic finding that Enterobacteriaceae flagella are not native polar or lateral γ-proteobacterial flagella but were horizontally acquired from an ancestral ß-proteobacterium. Using electron cryo-tomography and subtomogram averaging, we confirmed that Enterobacteriaceae flagellar motors resemble contemporary ß-proteobacterial motors and are distinct to the polar and lateral motors of other γ-proteobacteria. Structural comparisons support a model in which γ-proteobacterial motors have specialized, suggesting that acquisition of a ß-proteobacterial flagellum may have been beneficial as a general-purpose motor suitable for adjusting to diverse conditions. This acquisition may have played a role in the development of the enteric lifestyle.

6.
Animals (Basel) ; 11(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546104

RESUMO

Chlamydia is a significant pathogen for many species, including the much-loved Australian marsupial, the koala (Phascolarctos cinereus). To combat this situation, focused research has gone into the development and refinement of a chlamydial vaccine for koalas. The foundation of this process has involved characterising the immune response of koalas to both natural chlamydial infection as well as vaccination. From parallels in human and mouse research, it is well-established that an effective anti-chlamydial response will involve a balance of cell-mediated Th1 responses involving interferon-gamma (IFN-γ), humoral Th2 responses involving systemic IgG and mucosal IgA, and inflammatory Th17 responses involving interleukin 17 (IL-17) and neutrophils. Characterisation of koalas with chlamydial disease has shown increased expression within all three of these major immunological pathways and monitoring of koalas' post-vaccination has detected further enhancements to these key pathways. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Recent advances in marsupial genetic knowledge and general nucleic acid assay technology have moved koala immunological research a step closer to other mammalian research systems. However, koala-specific reagents to directly assay cytokine levels and cell-surface markers are still needed to progress our understanding of koala immunology.

7.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472936

RESUMO

The koala population in northern Australia has become increasingly fragmented due to natural and man-made barriers and interventions. This situation has created a unique opportunity to study both endogenous and exogenous koala retrovirus (KoRV). To determine the impact that population isolation has had on KoRV diversity in Queensland, 272 koalas from six fragmented koala populations were profiled for their KoRV provirus across two natural biogeographical barriers (the St Lawrence Gap and the Brisbane Valley Barrier), one man-made geographical barrier (the city of Brisbane) and two translocation events (the single movement of koalas to an island and the repeated movement of koalas into a koala sanctuary). Analysis revealed that all koalas tested were KoRV-A positive, with 90 - 96% of the detected KoRV provirus from each koala representing a single, likely endogenous, KoRV-A strain. The next most abundant proviral sequence was a defective variant of the dominant KoRV-A strain, accounting for 3 - 10% of detected provirus. The remaining KoRV provirus represented expected exogenous strains of KoRV and included geographically localized patterns of KoRV-B, -C, -D, -F, -G, and -I. These results indicate that lineage diversification of exogenous KoRV is actively ongoing. In addition, comparison of KoRV provirus within known dam-sire-joey family groups from the koala sanctuary revealed that joeys consistently had KoRV proviral patterns more similar to their dams than their sires in KoRV-B, -C and -D provirus composition. Collectively, this study highlights both the consistency of endogenous KoRV and the diversity of exogenous KoRV across the fragmented koala populations in northern Australia.IMPORTANCE KoRV infection has become a permanent part of koalas in northern Australia. With KoRV presence and abundance linked to more severe chlamydial disease and neoplasia in these koalas, understanding how KoRV exists throughout an increasingly fragmented koala population is a key first step in designing conservation and management strategies. This survey of KoRV provirus in Queensland koalas indicates that endogenous KoRV provirus is ubiquitous and consistent throughout the state while exogenous KoRV provirus is diverse and distinct in fragmented koala populations. Understanding the prevalence and impact of both endogenous and exogenous KoRV will be needed to ensure a future for all koala populations.

8.
Mol Ecol ; 30(11): 2626-2640, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33219558

RESUMO

Most retroviral endogenization and host adaptation happened in the distant past, with the opportunity to study these processes as they occurred lost to time. An exception exists with the discovery that koala retrovirus (KoRV) has recently begun its endogenization into the koala (Phascolarctos cinereus) genome. What makes this opportunity remarkable is the fact that Northern Australian koalas appear to be undergoing endogenization with one KoRV subtype (KoRV-A), while all subtypes (KoRV-A-I) coexist exogenously, and Southern Australian koalas appear to carry all KoRV subtypes as an exogenous virus. To understand the distribution and relationship of all KoRV variants in koalas, the proviral KoRV envelope gene receptor binding domain was assessed across the koala's natural range. Examination of KoRV subtype-specific proviral copy numbers per cell found that KoRV-A proviral integration levels were consistent with endogenous incorporation in Northern Australia (southeast Queensland and northeast New South Wales) while revealing lower levels of KoRV-A proviral integration (suggestive of exogenous incorporation) in southern regions (southeast New South Wales and Victoria). Phylogeographical analysis indicated that several major KoRV-A variants were distributed uniformly across the country, while non-KoRV-A variants appeared to have undergone lineage diversification in geographically distinct regions. Further analysis of the major KoRV-A variants revealed a distinct shift in variant proportions in southeast New South Wales, suggesting this as the geographical region where KoRV-A transitions from being predominantly endogenous to exogenous in Australian koalas. Collectively, these findings advance both our understanding of KoRV in koalas and of retroviral endogenization and diversification in general.


Assuntos
Phascolarctidae , Infecções por Retroviridae , Animais , New South Wales , Filogenia , Queensland , Retroviridae/genética , Vitória
9.
Virol J ; 17(1): 168, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129323

RESUMO

Koala retrovirus (KoRV) is believed to be in an active state of endogenization into the koala genome. KoRV is present as both an endogenous and exogenous infection in all koalas in northern Australia. KoRV has been linked to koala pathologies including neoplasia and increased susceptibility to Chlamydia. A KoRV vaccine recently trialled in 10 northern koalas improved antibody response and reduced viral load. This communication reports the expression of key immune genes underlining the innate and adaptive immune response to vaccination in these northern koalas. The results showed that prior to vaccination, IL-8 was expressed at the highest levels, with at least 200-fold greater expression compared to other cytokines, while CD8 mRNA expression was significantly higher than CD4 mRNA expression level. Interferon-γ was up-regulated at both 4- and 8-weeks post-vaccination while IL-8 was down-regulated at 8-weeks post-vaccination.


Assuntos
Citocinas/genética , Interferon gama/genética , Phascolarctidae/virologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/veterinária , Retroviridae/imunologia , Vacinas Virais/imunologia , Animais , Formação de Anticorpos , Austrália , Estudos de Coortes , Citocinas/imunologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Phascolarctidae/imunologia , Retroviridae/genética , Infecções por Retroviridae/prevenção & controle , Regulação para Cima , Vacinas Virais/administração & dosagem
10.
Front Vet Sci ; 7: 530686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102563

RESUMO

Background: Chlamydial disease is a major factor negatively affecting koala populations. Vaccination is a promising management option that would result in immune-mediated protection against disease. Measuring and assessing vaccine efficacy can be challenging owing to both direct and indirect interactions caused by vaccination. In this study, we investigate vaccine-immune-chlamydial load-disease relationships from MOMP (major outer membrane protein) vaccine trials to protect healthy free-ranging koalas against Chlamydia-related diseases. Methods: We created a priori hypotheses based on data sources and perceived direct and indirect interactions from koalas vaccinated 6 months prior. Each hypothesis was tested as a structural equation model separately for either the urogenital or the ocular site to evaluate possible causality among measured variables. Model averaging was used as multiple models fit the data, and the strength of relationships was examined through averaged coefficients and the raw data. Results: We found more relationships in urogenital models as compared to ocular models, particularly those with interleukin 17 (IL17) mRNA expression compared to models with interferon gamma (IFNγ) expression. In the averaged model with IL17, urogenital chlamydial load was positively associated with disease and negatively associated with IL17 expression. MOMP vaccination had a trending effect for reducing urogenital chlamydial load and also had a strong effect on increasing IL17 expression. Not surprisingly, urogenital chlamydial load was a positive predictor for the development of urogenital disease at 6 months post-vaccination. Conclusions: Despite multiple potential sources of variation owing to the koalas in this study being free-ranging, our analyses provide unique insights into the effects of vaccinating against Chlamydia. Using structural equation modeling, this study has helped illuminate that the expression of the immune cytokine IL17 is linked to MOMP vaccination, and animals with a high urogenital chlamydial load expressed less IL17 and were more likely to develop disease, enhancing previous investigations. Going beyond univariate statistics, the methods used in this study can be applied to other preclinical vaccination experiments to identify important direct and indirect factors underpinning the effects of a vaccine.

11.
Immunogenetics ; 72(9-10): 499-506, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33083849

RESUMO

Characterizing the allelic diversity within major histocompatibility complex (MHC) genes is an important way of determining the potential genetic resilience of a population to infectious and ecological pressures. For the koala (Phascolarctos cinereus), endemic diseases, anthropogenic factors and climate change are all placing increased pressure on this vulnerable marsupial. To increase the ability of researchers to study MHC genetics in koalas, this study developed and tested a high-throughput immunogenetic profiling methodology for targeting MHC class I UA and UC genes and MHC class II DAB, DBB, DCB and DMB genes in a population of 82 captive koalas. This approach was validated by comparing the determined allelic profiles from 36 koala family units (18 dam-sire-joey units and 18 parent-joey pairs), finding 96% overall congruence within family profiles. Cancers are a significant cause of morbidity in koalas and the risk factors remain undetermined. Our analysis of this captive population revealed several novel MHC alleles, including a potential link between the DBB*03 allele and a risk of developing cancer. This method offers a reliable, high-throughput protocol for expanded study into koala immunogenetics.


Assuntos
Variação Genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Imunogenética , Neoplasias/patologia , Phascolarctidae/genética , Animais , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Masculino , Neoplasias/genética , Neoplasias/imunologia , Phascolarctidae/imunologia
12.
Sci Rep ; 10(1): 15013, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929174

RESUMO

Chlamydial disease control is increasingly utilised as a management tool to stabilise declining koala populations, and yet we have a limited understanding of the factors that contribute to disease progression. To examine the impact of host and pathogen genetics, we selected two geographically separated south east Queensland koala populations, differentially affected by chlamydial disease, and analysed koala major histocompatibility complex (MHC) genes, circulating strains of Chlamydia pecorum and koala retrovirus (KoRV) subtypes in longitudinally sampled, well-defined clinical groups. We found that koala immunogenetics and chlamydial genotypes differed between the populations. Disease progression was associated with specific MHC alleles, and we identified two putative susceptibility (DCb 03, DBb 04) and protective (DAb 10, UC 01:01) variants. Chlamydial genotypes belonging to both Multi-Locus Sequence Typing sequence type (ST) 69 and ompA genotype F were associated with disease progression, whereas ST 281 was associated with the absence of disease. We also detected different ompA genotypes, but not different STs, when long-term infections were monitored over time. By comparison, KoRV profiles were not significantly associated with disease progression. These findings suggest that chlamydial genotypes vary in pathogenicity and that koala immunogenetics and chlamydial strains are more directly involved in disease progression than KoRV subtypes.


Assuntos
Infecções por Chlamydia/veterinária , Chlamydia/genética , Complexo Principal de Histocompatibilidade/genética , Phascolarctidae/genética , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Tipagem Bacteriana , Chlamydia/classificação , Chlamydia/isolamento & purificação , Infecções por Chlamydia/epidemiologia , Coinfecção , Feminino , Gammaretrovirus/genética , Haplótipos , Interações Hospedeiro-Patógeno/genética , Imunogenética , Complexo Principal de Histocompatibilidade/imunologia , Tipagem de Sequências Multilocus , Phascolarctidae/imunologia , Prevalência , Queensland/epidemiologia , Infecções por Retroviridae/veterinária
13.
NPJ Vaccines ; 5: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699650

RESUMO

The long-term survival of the koala is under serious threat from multiple factors, including infectious disease agents such as Chlamydia and koala retrovirus (KoRV). KoRV is present in both exogenous and endogenous forms, depending on the geographical location of the population. In the northern half of Australia, it is present as an endogenous infection in all koalas, making a case for an urgent need to develop a therapeutic vaccine that might prevent KoRV-associated pathologies in these koalas. To this end, we determined the therapeutic effects of vaccinating koalas harbouring endogenous KoRV with a recombinant KoRV Env protein combined with a Tri-adjuvant. We found that vaccination led to a significant increase in circulating anti-KoRV IgG levels, as well as increase in neutralising antibodies. Our study also showed that post-vaccination antibodies were able to recognize epitopes on the Env protein that were unrecognised pre-vaccination, as well as resulting in an increase in the recognition of the previously recognised epitopes. The vaccine also induced antibodies that were cross-reactive against multiple KoRV-subtypes. Finally, we found a complete clearance of KoRV-A in plasma from koalas that had detectable levels of KoRV-A pre-vaccination. Similarly, there was a significant reduction in the expression of KoRV-B viral RNA levels post-vaccination. Collectively, this study showed that koalas harbouring endogenous KoRV can benefit from prophylactic vaccination against KoRV using a recombinant KoRV-A Env protein and that the mechanism of this protection might be through the boosting of natural anti-KoRV antibodies and expanding the breadth of the recognised epitopes.

14.
Sci Rep ; 10(1): 10152, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576914

RESUMO

Chlamydia infection and disease are endemic in free-ranging koalas. Antibiotics remain the front line treatment for Chlamydia in koalas, despite their rates of treatment failure and adverse gut dysbiosis outcomes. A Chlamydia vaccine for koalas has shown promise for replacing antibiotic treatment in mild ocular Chlamydia disease. In more severe disease presentations that require antibiotic intervention, the effect of vaccinating during antibiotic use is not currently known. This study investigated whether a productive immune response could be induced by vaccinating koalas during antibiotic treatment for Chlamydia-induced cystitis. Plasma IgG antibody levels against the C. pecorum major outer membrane protein (MOMP) dropped during antibiotic treatment in both vaccinated and unvaccinated koalas. Post-treatment, IgG levels recovered. The IgG antibodies from naturally-infected, vaccinated koalas recognised a greater proportion of the MOMP protein compared to their naturally-infected, unvaccinated counterparts. Furthermore, peripheral blood mononuclear cell gene expression revealed an up-regulation in genes related to neutrophil degranulation in vaccinated koalas during the first month post-vaccination. These findings show that vaccination of koalas while they are being treated with antibiotics for cystitis can result in the generation of a productive immune response, in the form of increased and expanded IgG production and host response through neutrophil degranulation.


Assuntos
Antibacterianos/uso terapêutico , Formação de Anticorpos , Vacinas Bacterianas/imunologia , Infecções por Chlamydia , Chlamydia/imunologia , Cistite/microbiologia , Cistite/terapia , Imunoglobulina G/sangue , Phascolarctidae/imunologia , Vacinação , Animais , Antibacterianos/efeitos adversos , Proteínas da Membrana Bacteriana Externa/imunologia , Degranulação Celular/genética , Cistite/imunologia , Feminino , Masculino , Neutrófilos/imunologia , Neutrófilos/fisiologia
15.
FEMS Microbiol Rev ; 44(5): 583-605, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556174

RESUMO

The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.


Assuntos
Infecções por Chlamydia/veterinária , Phascolarctidae/imunologia , Infecções por Retroviridae/veterinária , Animais , Austrália , Chlamydia , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/terapia , Espécies em Perigo de Extinção , Phascolarctidae/microbiologia , Phascolarctidae/virologia , Retroviridae , Infecções por Retroviridae/diagnóstico , Infecções por Retroviridae/prevenção & controle , Infecções por Retroviridae/terapia , Vacinas Virais
16.
Sci Rep ; 9(1): 13194, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519969

RESUMO

Chlamydial disease threatens many of Australia's koala populations, and yet our understanding of chlamydial epidemiology and disease dynamics in koalas is limited by a lack of comprehensive, longitudinal population studies. To address this, we utilised longitudinal samples from a large-scale population study of wild koalas in south-east Queensland, to follow chlamydial infections over time and to investigate some of the drivers of disease progression. Our findings show, firstly, that almost two thirds of chlamydial infections progressed to disease, challenging the notion that chlamydial infections in koalas commonly remain chronic and asymptomatic. Secondly, disease progression at the urogenital tract site was associated with infection load, and urogenital tract shedding was significantly higher when koalas acquired a new infection. Thirdly, chronic chlamydial exposure was not necessary for pathogenic sequelae to develop, such as infertility and mortality. Fourthly, ompA-characterised strain sub-types may reflect tissue tropisms and pathogenicity, and the chlamydial status of some chronically infected koalas may be explained by reinfections with novel genotypes. Finally, successful antimicrobial treatment provided only short-term protection against reinfection and disease progression in susceptible koalas. These findings highlight the importance of identifying and preventing chlamydial infections in koalas, informing new population management strategies and research priorities.


Assuntos
Infecções por Chlamydia/etiologia , Infecções por Chlamydia/veterinária , Chlamydia/genética , Phascolarctidae/microbiologia , Fatores Etários , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/epidemiologia , Oftalmopatias/microbiologia , Oftalmopatias/veterinária , Feminino , Doenças Urogenitais Femininas/microbiologia , Doenças Urogenitais Femininas/veterinária , Genótipo , Estudos Longitudinais , Masculino , Queensland/epidemiologia , Doenças Urológicas/microbiologia , Doenças Urológicas/veterinária
17.
PLoS One ; 14(8): e0221109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415633

RESUMO

Chlamydial-induced cystitis in the koala (Phascolarctos cinereus) is currently treated by antibiotics. However, while reducing the chlamydial load, this treatment can also lead to gastrointestinal complications and death. Development of alternative treatments, such as a therapeutic chlamydial vaccine, are hindered by the lack of detailed understanding of the innate immune response to chlamydial clearance and disease regression during antibiotic treatment. Through clinical, microbiological and transcriptomic approaches, disease regression, bacterial clearance and innate immune responses were mapped in koalas with signs of chlamydial-induced cystitis while receiving anti-chlamydial antibiotics. Significant reduction in the signs of cystitis were observed during and post antibiotic treatment. This was observed as a thinning of the bladder wall and complete reversal of urinary incontinence. Transcriptomic analysis before treatment, at the end of treatment and prior to release identified significant down-regulation of specific genes involved in 21 biological pathways. Of these, the chemokine receptor signalling and NOD-like receptor signalling pathways where identified as important markers of inflammation. Specific genes within these pathways (NCF1 and NOX2) were significantly down-regulated, suggesting a decrease in reactive oxygen species production. Through the monitoring of specific clinical and transcriptomic markers, these findings allow detailed profiling of the clinical response to therapeutic vaccination in koalas with current signs of disease. This also adds to our understanding of innate immune responses to chlamydial infections and indicates that chlamydial-induced cystitis in the koala is linked to the regulation of reactive oxygen pathways.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia/metabolismo , Cistite/metabolismo , Regulação da Expressão Gênica , Phascolarctidae/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antibacterianos/uso terapêutico , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/veterinária , Cistite/tratamento farmacológico , Cistite/microbiologia , Cistite/veterinária
18.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243137

RESUMO

Koala retrovirus (KoRV) is unique in that it exists as both an exogenous and actively endogenizing gamma retrovirus of koalas. While nine subtypes of KoRV have been recognized, focused study of these subtypes in koalas over time and with different health outcomes has been lacking. Therefore, in this study, three wild koala cohorts were established and monitored to examine KoRV proviral and expression data from koalas that either remained healthy over time, began healthy before developing chlamydial cystitis, or presented with chlamydial cystitis and were treated with antibiotics. Deep sequencing of the proviral KoRV envelope gene revealed KoRV-A, -B, -D, and -F to be the major subtypes in this population and allowed for subtype-specific assays to be created. Quantification of KoRV transcripts revealed that KoRV-D expression mirrored the total KoRV expression levels (106 copies/ml of plasma), with KoRV-A and KoRV-F expression being ∼10-fold less and KoRV-B expression being ∼100-fold less, when detected. Strikingly, there was significantly higher expression of KoRV-D in healthy koalas than in koalas that developed chlamydial cystitis, with healthy koalas expressing a major KoRV-D/minor KoRV-A profile, whereas koalas that developed cystitis had variable KoRV expression profiles. Total anti-KoRV IgG antibody levels were found not to correlate with the expression of total KoRV or any individual KoRV subtype. Finally, KoRV expression was consistent between systemic and mucosal body sites and during antibiotic treatment. Collectively, this gives a comprehensive picture of KoRV dynamics during several important koala health states.IMPORTANCE The long-term survival of the koala is under serious threat, with this iconic marsupial being declared "vulnerable" by the Australian Government and officially listed as a threatened species. KoRV is clearly contributing to the overall health status of koalas, and research into this virus has been lacking detailed study of the multiple subtypes at both the proviral and expressed viral levels over time. By designing new subtype-specific assays and following well-defined koala cohorts over time, this study has generated a new more complete picture of KoRV and its relationship to koala health outcomes in the wild. Only by building a comprehensive picture of KoRV during both koala health and disease can we bring meaningful koala health interventions into better focus.


Assuntos
Gammaretrovirus/genética , Phascolarctidae/virologia , Retroviridae/genética , Animais , Austrália , Evolução Biológica , Evolução Molecular , Feminino , Regulação Viral da Expressão Gênica/genética , Marsupiais/virologia , Phascolarctidae/metabolismo , Provírus/genética , Retroviridae/metabolismo , Infecções por Retroviridae/virologia
19.
Front Microbiol ; 10: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766521

RESUMO

Chlamydia is a major bacterial pathogen that infects humans, as well as a wide range of animals, including marsupials, birds, cats, pigs, cattle, and sheep. Antibiotics are the only treatment currently available, however, with high rates of re-infection, there is mounting pressure to develop Chlamydia vaccines. In this review, we analyzed how Chlamydia vaccine trials have developed over the past 70 years and identified where future trials need to be focused. There has been a strong bias toward studies targeting C. muridarum and C. trachomatis within mice and a lack of studies matching chlamydial species to their end target host. Even though a large number of specific antigenic targets have been studied, the results from whole-cell vaccine targets show slightly more promising results overall. There has also been a strong bias toward systemic vaccine delivery systems, despite the finding that mucosal delivery systems have shown more promising outcomes. However, the only successful vaccines with matched chlamydial species/infecting host are based on systemic vaccine delivery methods. We highlight the extensive work done with mouse model trials and indicate that whole cell antigenic targets are capable of inducing an effective response, protecting from disease and reducing shedding rates. However, replication of these results using antigen preparations more conducive to commercial vaccine production has proven difficult. To date, the Major Outer Membrane Protein (MOMP) has emerged as the most suitable substitute for whole cell targets and its delivery as a combined systemic and mucosal vaccine is most effective. Finally, although mouse model trials are useful, differences between hosts and infecting chlamydial strains are preventing vaccine formulations from mouse models to be translated into larger animals or intended hosts.

20.
PLoS One ; 14(1): e0210245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30615687

RESUMO

Chlamydia pecorum is responsible for causing ocular infection and disease which can lead to blindness in koalas (Phascolarctos cinereus). Antibiotics are the current treatment for chlamydial infection and disease in koalas, however, they can be detrimental for the koala's gastrointestinal tract microbiota and in severe cases, can lead to dysbiosis and death. In this study, we evaluated the therapeutic effects provided by a recombinant chlamydial major outer membrane protein (MOMP) vaccine on ocular disease in koalas. Koalas with ocular disease (unilateral or bilateral) were vaccinated and assessed for six weeks, evaluating any changes to the conjunctival tissue and discharge. Samples were collected pre- and post-vaccination to evaluate both humoral and cell-mediated immune responses. We further assessed the infecting C. pecorum genotype, host MHC class II alleles and presence of koala retrovirus type (KoRV-B). Our results clearly showed an improvement in the clinical ocular disease state of all seven koalas, post-vaccination. We observed increases in ocular mucosal IgA antibodies to whole C. pecorum elementary bodies, post-vaccination. We found that systemic cell-mediated immune responses to interferon-γ, interleukin-6 and interleukin-17A were not significantly predictive of ocular disease in koalas. Interestingly, one koala did not have as positive a clinical response (in one eye primarily) and this koala was infected with a C. pecorum genotype (E') that was not used as part of the vaccine formula (MOMP genotypes A, F and G). The predominant MHC class II alleles identified were DAb*19, DAb*21 and DBb*05, with no two koalas identified with the same genetic sequence. Additionally, KoRV-B, which is associated with chlamydial disease outcome, was identified in two (29%) ocular diseased koalas, which still produced vaccine-induced immune responses and clinical ocular improvements post-vaccination. Our findings show promise for the use of a recombinant chlamydial MOMP vaccine for the therapeutic treatment of ocular disease in koalas.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Chlamydia/veterinária , Chlamydia/imunologia , Oftalmopatias/prevenção & controle , Phascolarctidae/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Chlamydia/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/prevenção & controle , Oftalmopatias/epidemiologia , Oftalmopatias/microbiologia , Feminino , Masculino , Phascolarctidae/microbiologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA